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LOW-ACCELERATION TAKEOFF FROM
A SATELLITE ORBIT!

H. Lass?
Je Lorell®

JET PROPULSION LABORATORY
California Institute of Technology
Pasadena, California

ABSTRACT

The method of Kryloff and Bogoliuboff for handling
problems in non-linear mechanics is applied to the problem
of takeoff from a satellite orbit. The analysis is restricted
to low acceleration, and covers three cases: constant rad-
ial thrust, constant tangential thrust, and intermittent thrust.
The results are compared with those appearing elsewhere
in the literature.

Lrhig paper presemts results of one phase of research carmried out at the Jet Propulsion Laboratory, California
Institute of Technology, under Contract No. NASw-6, sponsored by the National Aeronautics and Space Administration,

2Research Specialist, Space Sciences Division,

3Research Specialist, Systems Division; member, ARS,
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. INTRODUCTION

In a 1953 paper (1)4 titled ““Take-off from a Satellite Orbit,” H. S. Tsien treated the equations of motion
of a powered rocket in a central gravitational field. His method of analysis was direct, and led to elliptic
integrals for the radial-thrust case and to series approximations for the circumferential-thrust case. Most of the
subsequent literature on low-thrust trajectories continues to use Tsien’s results and his direct method of

approach,

Thus, Dobrowolski (2) makes use of the elliptic integral solution to get formulas for the rate of pre-

cession of the line of apses. Copeland (3) also derives the elliptic integral expressions, and in addition exhibits
graphs of particular trajectories. Perkins (4), treating the case of low-level tangential thrust, uses the method of

linear perturbations.

Many of the results obtained by these direct methods can be obtained much more quickly by the nonlinear
techniques of Kryloff and Bogoliuboff (5). A brief statement of this method is given below. For more details, the

reader is referred to Minorsky (6).

In the following Sections, the Kryloff - Bogoliuboff method is applied to three different examples of low-
acceleration orbits: radial thrust, circumferential thrust, and intermittent thrust, It is seen that the results agree

with those in the literature, and in certain cases are amrived at much more quickly.

Il. THE KRYLOFF-BOGOLIUBOFF METHOD

An approximate solution to the nonlinear differential equation

& Lt sin ®) [1)

dt

can be obtained as follows. Equation [1] yields

€+ 2m) — 2 (8) fram
xerim oW B f(x, sin 7) dT (2]

2m 21

t

4'Numhers in parentheses indicate References at end of paper.
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Since u is very small, one may consider that x essentially remains constant during the integration from 7= ¢ to

T=1t + 27, Since sin ¢ is periodic, Eq. [2] becomes

27
x(¢ + 2m) ‘x(‘),\, M flx, sin 7) d7= uF (%) [3)

2 2 o

Finally, the left side of Eq. [3] is replaced by dx/d¢, since the slope of the secant line is approximately the

slope of the tangent line for u << 1. Equation [1] is replaced by

27
_di = uF(x) = il f(x, sin 7) dT [4]
dt 27 Jo

and Eq. [4] can be integrated by a separation of variables. Equation (4] can be obtained immediately from
Eq. [1] simply by averaging the right-hand side of Eq. [1] over one cycle of the motion in the time domain.
This Kryloff-Bogoliuboff method can be applied to a system of differential equations involving slowly varying

quantities,

lll. PLANETARY MOTION WITH A CONSTANT RADIAL PERTURBING FORCE

Consider the case of a point mass m under the influence of a central inverse-square-law force of

attraction upon which is superimposed a small constant radial force €. Using polar coordinates (r, 9) with origin

at the center of attraction, the equations of motion are

—
d‘2 de l'2 m

d% (g_q)z GM €

d de
r2 -2

dt dt J




Jet Propulsion Laboratory

Technical Release No. 34-99

In the usual way one eliminates d¢, using r24 6 = hdt, and replaces r by 1/u to obtain

d2 GM €

—— U= —

d62 k2 mh22
or the system

du

—=v

do

dv GM €

—_— = U + — -

d6 h2 mh2u2

For € = 0, the solution of Eq. [7] is®

, CH
u =sgsin (6 + Gp) + —

h2

v =sgcos (6 + 6y

with s and 6, constants of integration. In order to apply the averaging process of Kryloff-Bogoliuboff, let

u=2ssin (6+¢@) + GM/h2and v = s cos (8 + @), with s and ¢ unknown functions of 6. Thus,

du  d d
Y B D s <1+—35\‘m (6 + &)

dé déb do

—‘—ig—=is—~ cos (0 +¢) —s 1+il—q-5- sin (6 + @)
d6 déb do

[6]
)
L (7]
N
L (8]
(9]

5The unperturbed solution is restricted to closed (i.e. elliptic) orbits, Hyperbolic orbits, being non-cyclic, cannot be

handled by the present technique.
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Equations [7] yield

ds o € cos (0 + @) )
d6 CM 2
mh? |s sin @+ P + —
h2
- [10]
Lij)—_ € sin (6 + ¢)
do GM 2
mh2s | s sin (6 + ) + —
B2 J

Applying the averaging process of Kryloff-Bogoliuboff to Eq. [10] yields

2 1
ds € cos TdT 0
40 2mmi? < GM>2

s s8in T+ ——
h2
> [11]
3
2m 2
. oin TdT € <(;2M2 32>
do 27rmh2s 0 < . GM>2 mh?2 B4
s sin T+ —
A2 J
An integration of Eq. [11] yields
s = so = constant
[12]
3 :
€ G2M2 2
¢ = sg 0+ ¢,
mh? \ R4




Jet Propulsion Laboratory Technical Release No. 34-99

so that

3

1 GM e [GZM2 2
u=—=-—+s,sin 1 —-— ———sg 9+¢0 [13]
r 32 . mh2 K4

It is seen that the line of apsides advances by the amount

3

2
-8 g) radians/revolution

while the apogee and perigee distances remain invariant, In the case of a nearly circular orbit, s << GM/k2,
the precession rate is 2777, where 7 is the ratio of thrust acceleration, €/m, to the gravitational acceleration,

GM/r2,

IV. PLANETARY MOTION UNDER A CONSTANT TRANSVERSE PERTURBING FORCE

A properly oriented reflecting sail will experience a small transverse thrust as a result of solar radiation.

In the following example, the transverse thrust is assumed to be constant.

The equations of motion are given by

d% de\? GM
_ T — - e e
d‘2 dt r2

[14]
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Let h = r2 (d 6/ds), so that dh/dt = (€/m) r and dt = (r2/h) d6 = d6/hu® for u = 1/r. Then

<
dh  dh dt €
do dt d6 mh u3
dr dr d6 h dr du
St A Y Mindl > [15]
dt do ds ;2 d6 do
2
d _ ap € du
dt2 d 92 mu d6
Letting k = h2and v = du/d 0 yields
\
dk 2€
do  mhd
d
il > [16]
de
dv GM €v
—_— U+ — — -
do k mk u3
o
For € = 0, the solutions of Eq. [16] are®
-
k= ko = constant
GM
u = —+ s, sin 6 + 6y } (17]
ko
v=80 cos (9+ 90) J
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Now let

GM
u=—+8sin (6 +¢)

k

v=scos (6+¢)

with s, ¢, and k unknown functions of 6, Equations [16] become

-3
\:(—;y +s sin(@ + qS)]
k

-3
2
€s cos? O+ @] [‘?‘1 v e i (B4 ¢,]

mk k

ds [26 GM sin (6 + @)
mk?2

d 2€ GM cos (6 + @) € cos (0 + @) sin (6 + @) GM .
- + —— 4+ s sin (6 + @)
a6 k2 ik k

s

Applying the averaging process of Kryloff-Bogoliuboff yields

262M2
<_ ’ 32>
de € k2

c2M2 2
\ k2
7G2M2
ds € k2
do omk

t

L

\

[18]

{19]

[ 20]
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do
;g =0 [20 cont’d]
From Eq. [20], it follows that

762M2

T g2
d k2
e 2 [21]
dk 2k ZG2M2 9

——+ 8

k2

The substitution s = w(k)/k makes possible the integration of Eq. [211, with the result that

242 _ (sk)2
kg SHM - (k) [22]
4
(sk)3

with K a constant of integration which depends on the initial values of s and & = k2, Equation [22] is a cubic

equation in (sk)?, and the algebraic solution of this equation yields s = s(k).

From Eq. [20] for € < 0, it follows that dk/d 6 < 0, so that k tends to zero, and hence r + 0, an
expected result. From Eq. [22], it is seen that the square of the eccentricity of the orbit, E2 = s%k2/G2H2 » 1

for € < 0. For € > 0 it can be seen that k + ccand s + 0, so that r - oo,

The apogee distance is given by

r o= , s>0 [23]

so that in one cycle r, changes by an amount Ar , given by
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4me r,
Ar. ¥ — = 47r

GmM

[24]

[25]

10
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V. SATELLITE MOTION UNDER AN INTERMITTENT PERTURBING FORCE

It is of interest to compute the motion of a satellite of the Earth acted upon intermittently by a uniform
thrust (e.g., an ion motor). The uniform thrust acts upon the satellite for the half range 0 £ 0 £ 7; in the half
range 7 < @ < 277, the ion motor is shut off. This periodic thrust program is continued, and the motion of the
satellite is compared with the motion of a satellite having no thrust program. The latter satellite is assumed to

move in a circular path. The oblateness of the Earth is neglected since the small force field due to the Earth’s

oblateness affects the motion of both satellites in much the same fashion.

In polar coordinates the motion of the satellite is given by

d2 6\?2 GM
—t—r<—¢—l—> =——+ pugF sin @

dtz dt r2 L
[26]

1d do
T —(r? =)= ugF cos 8
rodt dt

with F = 1for 02 05 7, F = Ofor m< 6 < 27. The potential per unit mass of the ion thrust motor is given

— pgr sin OF, u << 1, g being the acceleranion of gravivy ui itic e’ v Sorsass, The laoe

by ¢ = — ugFy

of mass of the satellite has been neglected.

Let r2(d 6/dt) = h £ constant, u = 1/r, so that

dr dr k A du

dt do 2 dé

d? d? d

e p22ft K8 p e 6 } [27]
dt2 d62 u d6

1
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The equations of motion become

W
du
—— =9
dé
d . GM
_?,=._u+——ﬁg—Fsin9~ﬂFcos9 ; [ 28]
do B2 a2 52,3
dh
ok F cos 6
dé 4.3
J
The substitution
GM T
u=—+Asin 8+ B cos O
h2
\
[29]
v=A cos —B sin 8
with 4 and B unknown functions of 6, reduces Eq. [28] to
dAd  2ugGM
— = _}L_g__"F sin & cos 9—£g—F sin & cos G — #—g—gF cos? 6
do h4u3 h2u2 h2u3
dB  2u.gGM
E_cKE ~Fcos29+ﬁ§—~Fsin29+'u—giFsin9cos€ [30]
d6 44,3 122 h%8
dh
B EEF s
dé hu3

The instantaneous eccentricity of the orbit is given by

42 + B2

€ = —

GM

12
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The €2 terms, etc., are neglected so that A2 + B2 << G2M2/A%, Thus

U =—

-2

u . ——

-3

U %o

\
GM Ah? Bh2
l+ ——sin 8+ —cos 8
A2 GM GM
B4 Ah? BhZ
1—2 sin —?——cos e > [31]
02M2 GM GM
K6 3442 3Bk2
1 - - sin 8 — — -— cos &
G3M3 GM GM
J

In order to apply the averaging process of Kryloff-Bogoliuboff to the system of equations [30] the

following integrals are evaluated.

2 m
k6 34h2 3Bh2 2488 )
f Fu 3 ginBcos6d6 = ——— f <1 ——— gin@ — -~ —cosf)| sinfcosfdf = — ——
0 c3m3 A GM GM iyt
2 4 . 2 2 6
- k 24h 2Bh 4h°B
f Fu 2sinfcos 0d0 = —— f( — - 8inf — -—- cos@)sin@cos@dﬁ:—A-—————
o G2M2 A GM GM 3G2H3
2 6 . 6
k 2h°B
f Fou~3 cos?0d0 = —— f (A cos @ — Bsin0) cos26d0 = - --———, since € <<1
p c3u3 3G3M3
2 6 . 2 2
k Ah 3Bh
f Fu3¢os26d6 = — - f 1- 3—— sinf — —— — cos 0] cos26d6
° G3M3 0 GM GM

v

kS 2442
G3M3 2 GM

L [32]

13
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-4 4 2 2 3
h4 24h 2Bk
f Fu=24in26d0 = — — f 1 - ginf— ——— cosf |sin26d8
C2M2 GM GM

% (7 84k
C2M2 2 3GM

0

2n 6 ”
h >
f Fou 3 sinOcos 0d0 = — — f (A cos @ —Bsinf) sinBcos6d O
3y3
0 C°M 0
W4,
= - ——-—, since €° << 1
3G3y3
i 6 . 2 2 8
k 34k 3Bh 37h°B
f Fu 3 cos0d6 = f(l - -ginf — ——— cosB) cosed6=——7—r-—--—-
0 G3M3 0 GM GM 2G4M4
J

Equations [30] become

Next, we remove the averaging symbol < >, and integrate the system of equations [33]. Thus

dA  AGM

dh 3mhd

[32 cont’d]

[33]

14
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A4d=--""_L,K (34]

with K a constant of integration. From Eq. [33] and [34] are obtained

G2M? 8 4KGM
BB = — —— [1+-— \dh + —— dh

h5 3 77h3
[35]

B2 <1 2>c2u2 9KGM
—_—=l-+—]— 4+ L

2 \4 37 4 2

with L a constant of integration. The assumption 42 + B2 << G2M2/ k% enables one to deduce that & is a
constant whose value can be obtained by setting the right side of Eq. [35] equal to zero and solving for A. This
result is not surprising for orbits of small eccentricity, since on the average the torque produced by the thrust for

the range 0 £ 8 £ 77/2 tends to cancel the torque produced by the thrust for the range 7/2 $osn

Integrating the second equation of [33], with & and 4 constants of the motion, yields

82 3 2 3Kh2
G | (A 6 + B, [36]
G".MZ 4 1T2 wGM

Thus

1 GM 2GM k2 [/3 2 3Kh2
u=_=___+(1(_ \\sin9+ et 12,2\ 6+ By »cosb (37]
TRz \ 3ma2/ cu? [\* 2/ TOHM

If the satellite is initially in circular motion, thenr = R, GM/h2 =1/R,u=1/R,4 =0,at6=0,¢t = 0,

so that
2GM B2 f3 2 3Kh2
K- LJEE M2 ) o
3mh2  C2M2 4 2 7GM

By=0

[38]

15
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Hence 2GM ugh2< 9
—— — — J— + —_—
3mh?  GMZ\4 2
K
3ught
] _ K8t
nG3IM3

and

neglecting 12 terms, so that

4GM

r=R I:l + 3'u'gkz(sin 6 — 0 cos 9):|

since b2 = GHR. The change in r per revolution is

The instantaneous eccentricity is given by

_i“_l'_gli_\/1+92

4 GM

{30]

os O [40]

[41]

[42]

[43]

16
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For = 1075, GM/R? ~ g, one has € = (3/4) 1073 V1 + 92, so that the eccentricity will remain

small for a considerable number of revolutions. Thus we are justified in omitting €2 terms, etc.

From r%(d 6/dt) = h, and from Eq. [41] one obtains

) 3ugR? 3 he k
O —t + it cos| — ¢t + sin{f —— ¢t} —1 [44]
R2 GM R2 2R2 R2

The coordinates of the unperturbed satellite are o = R, 90 = ht/R2. The distance £ between the two

satellites is given by

1
2

EEREHOT 20T -

VI. COMPARISON WITH OTHER RESULTS

It was shown above, in the discussion of a constant radial perturbing force that for a small radial thrust

the trajectory is given by Eq. [13] which may be written in the form

h2
GM
r= [46]
s h2
1+ sin [(1—F)9+¢o]
GM

17
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where

e [6Iy2 2
r‘=,_‘_<v, — 33) [47]
mh2 B4

Equation [1]is almost in standard form for an ellipse. In fact, by setting € = 0 it is seen that the osculating

ellipse has the following parameters:

semilatus-rectum = hz/GM
eccentricity = soh2/GM

angle from pericenter to origin = ¢,  77/2

In particular, for a near-circular orbit s is small. Therefore, by Eq. [46],

k2 ~ GMr [48]
and by Eq. [47],
€ GM
r~ = [49]
m 2

It follows from Eq. [46] and [49] that the line of apsides advances by the amount 2777 radians/revolution.

Dobrowolski indicates a regression of the line of apses. However, he apparently used an incorrect
expansion for his parameter b to substitute in his general solution. Substitution of the correct expansion gives a

result in agreement with ours. Copeland’s Fig. 2 further confirms the result that the line of apsides advances

rather than regresses.

For near-circular motion we can evaluate the constants So and d)o as follows. Assume that initially

r=rg,and } = 0 and 6 = 0. Then, by Eq. [46],

GM
1— = + s sin d>o (50]

18
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and, from the first derivative of Eq. [46],

0 =55 1 -T) cos b, (51]
It then follows that
bo = - 4 [s2]
2
and
GM 1
sg = — — - [53]
B2 T

But, since we are assuming near-circular motion, Eq. (6] gives d2u/d02 > 0, and

oM 1.7 [54]
R T r
hence, substituting in Eq. [53],
n
89~ — (55]
"o

To get the maximum excursion of the radial distance r, it is only necessary to take the difference between

Tmay @0d 7. as obtained from Eq. [46] and write

m
2s oh
_A_L= r002_‘_’_2_ [56]
o 1 -sght
GZAJ;——

19
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which, for the near-circular orbit reduces to

Ar 07 2
~ T s e [57]

To 1—s§r(2) 1'—172

in agreement with Dobrowolski.

In the case of circumferential thrust, the maximum radial distance in each cycle does not remain

stationary. Its rate of growth is given by Eq. [25] for the nearly circular orbit, i.e.

This result agrees directly with that of Perkins (4) as can be seen by substituting A¢= 27in Eq. [29] of
Perkin’s paper.

Briefly, application of the non-linear techniques of Kryloff and Bogoliuboff has been shown to provide
concise solutions to the problems of small radial thrust and small circumferential thrust previously discussed in
the literature, and to the problem of intermittent thrust, not previously published. It is hoped that this work will

inspire more extensive application of the method.

20
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